COFADMM: A Computational Features Selection with Alternating Direction Method of Multipliers
نویسندگان
چکیده
Due to the explosion in size and complexity of Big Data, it is increasingly important to be able to solve problems with very large number of features. Classical feature selection procedures involves combinatorial optimization, with computational time increasing exponentially with the number of features. During the last decade, penalized regression has emerged as an attractive alternative for regularization and high dimensional feature selection problems. Alternating Direction Method of Multipliers (ADMM) optimization is suited for distributed convex optimization and distributed computing for big data. The purpose of this paper is to propose a broader algorithm COFADMM which combines the strength of convex penalized techniques in feature selection for big data and the power of the ADMM for optimization. We show that combining the ADMM algorithm with COFADMM can provide a path of solutions efficiently and quickly. COFADMM is easy to use, is available in C, Matlab upon request from the corresponding author.
منابع مشابه
Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملAlternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
Chandrasekaran, Parrilo, and Willsky (2012) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for l...
متن کاملThe Alternating Direction Method of Multipliers An Adaptive Step-size Software Library
The Alternating Direction Method of Multipliers (ADMM) is a method that solves convex optimization problems of the form min(f(x) + g(z)) subject to Ax + Bz = c, where A and B are suitable matrices and c is a vector, for optimal points (xopt, zopt). It is commonly used for distributed convex minimization on large scale data-sets. However, it can be technically difficult to implement and there is...
متن کاملAlternating direction method of multipliers for penalized zero-variance discriminant analysis
We consider the task of classification in the high-dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose sparse zero-variance discriminant analysis (SZVD) as a method for simultaneously performing linear discriminant analysis and feature selection on high-dimensional data. This method comb...
متن کاملOn the alternating direction method of multipliers for nonnegative inverse eigenvalue problems with partial eigendata
We consider the nonnegative inverse eigenvalue problem with partial eigendata, which aims to find a nonnegative matrix such that it is nearest to a pre-estimated nonnegative matrix and satisfies the prescribed eigendata. In this paper, we propose several iterative schemes based on the alternating direction method of multipliers for solving the nonnegative inverse problem. We also extend our sch...
متن کامل